Do Autoencoders Need a Bottleneck for Anomaly Detection?
نویسندگان
چکیده
A common belief in designing deep autoencoders (AEs), a type of unsupervised neural network, is that bottleneck required to prevent learning the identity function. Learning function renders AEs useless for anomaly detection. In this work, we challenge limiting and investigate value non-bottlenecked AEs. The can be removed two ways: (1) overparameterising latent layer, (2) introducing skip connections. However, limited works have reported on use one ways. For first time, carry out extensive experiments covering various combinations removal schemes, types datasets. addition, propose infinitely-wide as an extreme example Their improvement over baseline implies not trivial previously assumed. Moreover, find architectures (highest AUROC=0.905) outperform their bottlenecked counterparts AUROC=0.714) recent benchmark CIFAR (inliers) vs SVHN (anomalies), among other tasks, shedding light potential developing improving
منابع مشابه
Regional Priority Based Anomaly Detection using Autoencoders
In the recent times, autoencoders, besides being used for compression, have been proven quite useful even for regenerating similar images or help in image denoising. They have also been explored for anomaly detection in a few cases. However, due to location invariance property of convolutional neural network, autoencoders tend to learn from or search for learned features in the complete image. ...
متن کاملImage Compression: Sparse Coding vs. Bottleneck Autoencoders
Bottleneck autoencoders have been actively researched as a solution to image compression tasks. However, we observed that bottleneck autoencoders produce subjectively low quality reconstructed images. In this work, we explore the ability of sparse coding to improve reconstructed image quality for the same degree of compression. We observe that sparse image compression produces visually superior...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولUnsupervised Sequential Information Bottleneck Clustering For Building Anomaly Based Network Intrusion Detection Model
In this paper we present a novel approach to unsupervised clustering in building an efficient anomaly based network intrusion detection model. The method is based on a recently introduced sequential information bottleneck (sIB) principle. KDDCup 1999 intrusion detection benchmark dataset is used for the experimentation of our proposed technique. The experimental results demonstrate that the pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2022
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2022.3192134